Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Micro- and nanoporous materials have gathered attention from the scientific community due to their size dependent properties, including but not limited to high specific surface area, surface diffusivity, bulk diffusivity and permeability, catalytic activity, and distinct optical properties. In this work, spherical nanoporous copper (np-Cu) powders, due to their nanosized porosity and low Cu2O content, show hemispherical total reflectance of 20% which is significantly lower than its bulk counterpart value for solid or molten copper of approximately 97% at wavelengths of most commercial Laser Powder Bed Fusion (L-PBF) commercial machines. The low-reflectance of np-Cu powders has the potential to be used in L-PBF to improve laser absorption, volumetric energy efficiency, and throughput of this additive manufacturing process. In fact, a prepared mixture of solid Cu powders containing only 5 wt.% of np-Cu powders reflects 34.8 % less than pure copper powders as shown in this paper. Np-Cu powders are fabricated via chemical dealloying of gas atomized CuAl alloy in a robust and scalable approach, and then mixed with pure copper powders to prepare hybrid feedstocks. Under this framework, the crucial role of deglomeration strategies to achieve homogeneity and flowability of np-Cu/Cu hybrid mixtures are evaluated via particle imaging to determine agglomerate size and composition with an eye at obtaining a high-quality print in L-PBF. In np-Cu powders fabrication, washing them in low-surface tension fluids upholds the highest degree of deglomeration in their fabrication process, and for hybrid feedstocks preparation, pre-mixing Cu and CuAl prior to dealloying yields the best homogeneity results with smallest size of agglomerates and good flowability.more » « less
- 
            Abstract Three-dimensional (3D) printing of metal components through powder bed fusion, material extrusion, and vat photopolymerization, has attracted interest continuously. Particularly, extrusion-based and photopolymerization-based processes employ metal particle-reinforced polymer matrix composites (PMCs) as raw materials. However, the resolution for extrusion-based printing is limited by the speed-accuracy tradeoff. In contrast, photopolymerization-based processes can significantly improve the printing resolution, but the filler loading of the PMC is typically low due to the critical requirement on raw materials’ rheological properties. Herein, we develop a new metal 3D printing strategy by utilizing micro-continuous liquid interface printing (μCLIP) to print PMC resins comprising nanoporous copper (NP-Cu) powders. By balancing the need for higher filler loading and the requirements on rheological properties to enable printability for the μCLIP, the compositions of PMC resin were optimized. In detail, the concentration of the NP-Cu powders in the resins can reach up to 40 wt% without sacrificing the printability and printing speed (10 μm·s−1). After sintering, 3D copper structures with microscale features (470 ± 140 μm in diameter) manifesting an average resistivity of 150 kΩ·mm can be realized. In summary, this new strategy potentially benefits the rapid prototyping of metal components with higher resolution at faster speeds.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
